WHO RESPONSE ON MALARIA

July 25, 2016

The WHO Global Technical Strategy for Malaria 2016-2030 – adopted by the World Health Assembly in May 2015 – provides a technical framework for all malaria-endemic countries. It is intended to guide and support regional and country programmes as they work towards malaria control and elimination.

 

The Strategy sets ambitious but achievable global targets, including:

  • Reducing malaria case incidence by at least 90% by 2030.

  • Reducing malaria mortality rates by at least 90% by 2030.

  • Eliminating malaria in at least 35 countries by 2030.

  • Preventing a resurgence of malaria in all countries that are malaria-free.

 

This Strategy was the result of an extensive consultative process that spanned 2 years and involved the participation of more than 400 technical experts from 70 Member States. It is based on 3 key pillars:

  • ensuring universal access to malaria prevention, diagnosis and treatment;

  • accelerating efforts towards elimination and attainment of malaria-free status; and

  • transforming malaria surveillance into a core intervention.

 

The WHO Global Malaria Programme (GMP) coordinates WHO's global efforts to control and eliminate malaria by:

  • setting, communicating and promoting the adoption of evidence-based norms, standards, policies, technical strategies, and guidelines;

  • keeping independent score of global progress;

  • developing approaches for capacity building, systems strengthening, and surveillance; and

  • identifying threats to malaria control and elimination as well as new areas for action.

 

GMP is supported and advised by the Malaria Policy Advisory Committee (MPAC), a group of 15 global malaria experts appointed following an open nomination process. The MPAC, which meets twice yearly, provides independent advice to WHO to develop policy recommendations for the control and elimination of malaria. The mandate of MPAC is to provide strategic advice and technical input, and extends to all aspects of malaria control and elimination, as part of a transparent, responsive and credible policy setting process.

 

RECURRENT MALARIA

Symptoms of malaria can recur after varying symptom-free periods. Depending upon the cause, recurrence can be classified as either recrudescence, relapse, or reinfection. Recrudescence is when symptoms return after a symptom-free period. It is caused by parasites surviving in the blood as a result of inadequate or ineffective treatment. Relapse is when symptoms reappear after the parasites have been eliminated from blood but persist as dormant hypnozoites in liver cells. Relapse commonly occurs between 8–24 weeks and is commonly seen with P. vivax and P. ovale infections. P. vivax malaria cases in temperate areas often involve overwintering by hypnozoites, with relapses beginning the year after the mosquito bite. Reinfection means the parasite that caused the past infection was eliminated from the body but a new parasite was introduced. Reinfection cannot readily be distinguished from recrudescence, although recurrence of infection within two weeks of treatment for the initial infection is typically attributed to treatment failure. People may develop some immunity when exposed to frequent infections.

GENETIC RESISTANCE TO MALARIA

According to a 2005 review, due to the high levels of mortality and morbidity caused by malaria—especially the P. falciparum species—it has placed the greatest selective pressure on the human genome in recent history. Several genetic factors provide some resistance to it including sickle cell trait, thalassaemia traits, glucose-6-phosphate dehydrogenase deficiency, and the absence of Duffy antigens on red blood cells.

 

The impact of sickle cell trait on malaria immunity illustrates some evolutionary trade-offs that have occurred because of endemic malaria. Sickle cell trait causes a change in the hemoglobin molecule in the blood. Normally, red blood cells have a very flexible, biconcave shape that allows them to move through narrow capillaries; however, when the modified hemoglobin S molecules are exposed to low amounts of oxygen, or crowd together due to dehydration, they can stick together forming strands that cause the cell to sickle or distort into a curved shape. In these strands the molecule is not as effective in taking or releasing oxygen, and the cell is not flexible enough to circulate freely. In the early stages of malaria, the parasite can cause infected red cells to sickle, and so they are removed from circulation sooner. This reduces the frequency with which malaria parasites complete their life cycle in the cell. Individuals who are homozygous (with two copies of the abnormal hemoglobin beta allele) have sickle-cell anaemia, while those who are heterozygous (with one abnormal allele and one normal allele) experience resistance to malaria without severe anemia. Although the shorter life expectancy for those with the homozygous condition would tend to disfavor the trait's survival, the trait is preserved in malaria-prone regions because of the benefits provided by the heterozygous form.

HISTORY                    

Although the parasite responsible for P. falciparum malaria has been in existence for 50,000–100,000 years, the population size of the parasite did not increase until about 10,000 years ago, concurrently with advances in agriculture and the development of human settlements. Close relatives of the human malaria parasites remain common in chimpanzees. Some evidence suggests that the P. falciparum malaria may have originated in gorillas.

 

References to the unique periodic fevers of malaria are found throughout recorded history. Hippocrates described periodic fevers, labelling them tertian, quartan, sub-tertian and quotidian. The Roman Columella associated the disease with insects from swamps. Malaria may have contributed to the decline of the Roman Empire, and was so pervasive in Rome that it was known as the "Roman fever". Several regions in ancient Rome were considered at-risk for the disease because of the favourable conditions present for malaria vectors. This included areas such as southern Italy, the island of Sardinia, the Pontine Marshes, the lower regions of coastal Etruria and the city of Rome along the Tiber River. The presence of stagnant water in these places was preferred by mosquitoes for breeding grounds. Irrigated gardens, swamp-like grounds, runoff from agriculture, and drainage problems from road construction led to the increase of standing water.

 

The term malaria originates from MedievalItalian: mala aria—"bad air"; the disease was formerly called ague or marsh fever due to its association with swamps and marshland. The term first appeared in the English literature about 1829. Malaria was once common in most of Europe and North America, where it is no longer endemic, though imported cases do occur.

 

Scientific studies on malaria made their first significant advance in 1880, when Charles Louis Alphonse Laveran—a French army doctor working in the military hospital of Constantine in Algeria—observed parasites inside the red blood cells of infected people for the first time. He therefore proposed that malaria is caused by this organism, the first time a protist was identified as causing disease. For this and later discoveries, he was awarded the 1907 Nobel Prize for Physiology or Medicine. A year later, Carlos Finlay, a Cuban doctor treating people with yellow fever in Havana, provided strong evidence that mosquitoes were transmitting disease to and from humans. This work followed earlier suggestions by Josiah C. Nott, and work by Sir Patrick Manson, the "father of tropical medicine", on the transmission of filariasis.

 

Chinese traditional medicine researcher TuYouyou received the Nobel Prize for Physiology or Medicine in 2015 for her work on antimalarial drug artemisin.

 

In April 1894, a Scottish physician Sir Ronald Ross visited Sir Patrick Manson at his house on Queen Anne Street, London. This visit was the start of four years of collaboration and fervent research that culminated in 1898 when Ross, who was working in the Presidency General Hospital in Calcutta, proved the complete life-cycle of the malaria parasite in mosquitoes. He thus proved that the mosquito was the vector for malaria in humans by showing that certain mosquito species transmit malaria to birds. He isolated malaria parasites from the salivary glands of mosquitoes that had fed on infected birds. For this work, Ross received the 1902 Nobel Prize in Medicine. After resigning from the Indian Medical Service, Ross worked at the newly established Liverpool School of Tropical Medicine and directed malaria-control efforts in Egypt, Panama, Greece and Mauritius. The findings of Finlay and Ross were later confirmed by a medical board headed by Walter Reed in 1900. Its recommendations were implemented by William C. Gorgas in the health measures undertaken during construction of the Panama Canal. This public-health work saved the lives of thousands of workers and helped develop the methods used in future public-health campaigns against the disease.

 

The first effective treatment for malaria came from the bark of cinchona tree, which contains quinine. This tree grows on the slopes of the Andes, mainly in Peru. The indigenous peoples of Peru made a tincture of cinchona to control fever. Its effectiveness against malaria was found and the Jesuits introduced the treatment to Europe around 1640; by 1677, it was included in the London Pharmacopoeia as an antimalarial treatment. It was not until 1820 that the active ingredient, quinine, was extracted from the bark, isolated and named by the French chemists Pierre Joseph Pelletier and Joseph BienaiméCaventou.

 

Quinine became the predominant malarial medication until the 1920s, when other medications began to be developed. In the 1940s, chloroquine replaced quinine as the treatment of both uncomplicated and severe malaria until resistance supervened, first in Southeast Asia and South America in the 1950s and then globally in the 1980s.

 

The medicinal value of Artemisia annua has been used by Chinese herbalists in traditional Chinese medicines for 2,000 years. In 1596, Li Shizhen recommended tea made from qinghao specifically to treat malaria symptoms in his "Compendium of Materia Medica". Artemisinins, discovered by Chinese scientist TuYouyou and colleagues in the 1970s from the plant Artemisia annua, became the recommended treatment for P. falciparum malaria, administered in combination with other antimalarials as well as in severe disease. Tu says she was influenced by a traditional Chinese herbal medicine source, The Handbook of Prescriptions for Emergency Treatments, written in 340 by Ge Hong For her work on malaria, TuYouyou received the 2015 Nobel Prize in Physiology or Medicine.

 

Plasmodium vivax was used between 1917 and the 1940s for malariotherapy—deliberate injection of malaria parasites to induce fever to combat certain diseases such as tertiary syphilis. In 1927, the inventor of this technique, Julius Wagner-Jauregg, received the Nobel Prize in Physiology or Medicine for his discoveries. The technique was dangerous, killing about 15% of patients, so it is no longer in use.

 

The first pesticide used for indoor residual spraying was DDT. Although it was initially used exclusively to combat malaria, its use quickly spread to agriculture. In time, pest control, rather than disease control, came to dominate DDT use, and this large-scale agricultural use led to the evolution of resistant mosquitoes in many regions. The DDT resistance shown by Anopheles mosquitoes can be compared to antibiotic resistance shown by bacteria. During the 1960s, awareness of the negative consequences of its indiscriminate use increased, ultimately leading to bans on agricultural applications of DDT in many countries in the 1970s. Before DDT, malaria was successfully eliminated or controlled in tropical areas like Brazil and Egypt by removing or poisoning the breeding grounds of the mosquitoes or the aquatic habitats of the larva stages, for example by applying the highly toxic arsenic compound Paris Green to places with standing water.

 

Malaria vaccines have been an elusive goal of research. The first promising studies demonstrating the potential for a malaria vaccine were performed in 1967 by immunizing mice with live, radiation-attenuatedsporozoites, which provided significant protection to the mice upon subsequent injection with normal, viable sporozoites. Since the 1970s, there has been a considerable effort to develop similar vaccination strategies for humans.

FAQ:
 

How is malaria transmitted?

Usually, people get malaria by being bitten by an infective female Anopheles mosquito. Only Anopheles mosquitoes can transmit malaria and they must have been infected through a previous blood meal taken from an infected person. When a mosquito bites an infected person, a small amount of blood is taken in which contains microscopic malaria parasites. About 1 week later, when the mosquito takes its next blood meal, these parasites mix with the mosquito's saliva and are injected into the person being bitten.

Because the malaria parasite is found in red blood cells of an infected person, malaria can also be transmitted through blood transfusion, organ transplant, or the shared use of needles or syringes contaminated with blood. Malaria may also be transmitted from a mother to her unborn infant before or during delivery ("congenital" malaria).

 
Is malaria a contagious disease?

No. Malaria is not spread from person to person like a cold or the flu, and it cannot be sexually transmitted. You cannot get malaria from casual contact with malaria-infected people, such as sitting next to someone who has malaria.

 

How do I know if I have malaria for sure?

Most people, at the beginning of the disease, have fever, sweats, chills, headaches, malaise, muscles aches, nausea, and vomiting. Malaria can very rapidly become a severe and life-threatening disease. The surest way for you and your health-care provider to know whether you have malaria is to have a diagnostic test where a drop of your blood is examined under the microscope for the presence of malaria parasites. If you are sick and there is any suspicion of malaria (for example, if you have recently traveled in a country where malaria transmission occurs), the test should be performed without delay.

 

When should malaria be treated?

The disease should be treated early in its course, before it becomes serious and life-threatening. Several good antimalarial drugs are available, and should be taken early on. The most important step is to think about malaria if you are presently in, or have recently been in, an area with malaria, so that the disease is diagnosed and treated right away.

 

When is malaria self-treatment recommended?

Very rarely. Travelers who are taking effective malaria preventive drugs but who will be traveling for an extended period of time or who will be at higher risk of developing a malaria infection may decide, in consultation with their health-care provider, to take along malaria treatment medication (referred to as a reliable supply) in case they develop malaria while traveling. If the traveler develops symptoms of malaria, they should immediately seek medical attention so that they can be examined and diagnosed appropriately. If they are diagnosed with malaria, they will then already have with them a reliable supply of an effective malaria treatment medicine to take. Malaria self-treatment should begin right away if fever, chills, or other influenza-like illness symptoms occur and if professional medical care is not available within 24 hours. Self-treatment of a possible malarial infection is only a temporary measure and immediate medical care is important. Appropriate options for a reliable supply of malaria treatment medicines are atovaquone/proguanil or artemether/lumefantrine.

 

 

Click on WHAT YOU SHOULD KNOW ABOUT MALARIA to learn more.

 

 

....making effort to "STAYWELL"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCE:

https://www.cdc.gov/malaria/about/faqs.html

https://www.malarianomore.org/pages/what-is-malaria

http://www.healthline.com/health/malaria

http://www.medicalnewstoday.com/articles/150670.php

http://www.who.int/mediacentre/factsheets/fs094/en/

 

Please reload

Follow Us
Follow us @staywellworldofficial

YOU MAY ALSO LIKE

Please reload

Recent Posts

December 29, 2018

October 4, 2018

Please reload

RELATED POSTS

Please reload